version: 1.2

本文转载自:传送门 知乎作者:三川啦啦啦


等价无穷小替换,本质上是一个选择估计值精确度的问题。我下面通过一个非常通俗易懂的例子来说明.
我问
(LARGE frac{pi-3}{0.1}approx ?)
答:约等于1.

什么, (pi = 3.1_{cdots}) 代入上式,
(LARGE frac{pi-3}{0.1}=frac{3.1-3}{0.1}=frac{0.1ldots}{0.1}approx 1)

这个时候,我们只需要用到 π 的估计值 3.1就够了.
但是,若问
(LARGE frac{pi-3.1}{0.0415}approx ?)

这个时候,如果我们仍然选择 π 的估计值 3.1代入上式,就会出现灾难性后果:
(LARGE frac{0}{0.0415}approx 0)

这个约等于就跟玩一样,明明约等于 1 才更准确啊!
(LARGE frac{pi-3.1}{0.0415}=1.002232616621519_{cdots})

导致这个后果的原因是什么呢?
你看,如果我使用 π 稍精确一点估计值3.14(而不是3.1),代入结果
(LARGE frac{pi-3.1}{0.041}approxfrac{0.040}{0.041}approx 1)

问题又来了(这是一个关键性问题),

为什么在第二种情况,我们选择了π 更精确的估计值3.14,而没有选用3.1?

前后两道例题的区别在哪里?

前后两个例子的区别在于——对误差项估计的精确程度要求不同,前一道题对 π 的估计只精确到了十分位(0.1),而后者对 π 的估计精确到了百分位(0.01).
我们会发现分母是一个对精确度要求的明显指标——分母数量级越小,对分子的变化越敏感(想想反比例函数在0点的性态),于是对估值的精度要求变高.

其实等价无穷小的替换,无非也是这种情况,下面仅说明一例.
我们知道
(LARGE ln(1+x) sim x , vert x vert < 1)

是一对很经典的等价无穷小.

学习了 Taylor公式后,我们知道关于 ln(1+x) 更精确的逼近式:
(LARGE ln (1+x) sim x – frac{x^{2}}{2}+frac{x^{3}}{3}-ldots)

对于极限
(LARGE limlimits_{x o 0} frac{ln(1+x)}{x} = limlimits_{x o 0}frac{x}{x} = 1)

这个时候,用 x 当作 ln(1+x) 的“估计值”,已经够用了(注意分母),而若求极限
(LARGE limlimits_{x o 0}frac{ln(1+x)-x}{x^{2}} = limlimits_{x o 0}frac{x-frac{x^{2}}{2} – x }{x^{2}} = -frac{1}{2})

这是时候用(frac{x-x^{2}}{2})作为(ln(1+x))的“估计值”,显然比用 x 显得更为适宜(注意分母).

注意到了什么规律了吗???

分母是几阶,泰勒就得展到几阶,这就是所谓的上下同阶原理.