negative log likelihood
文章目录
negative log likelihood
似然函数(likelihood function)
Overview
Definition
离散型概率分布(Discrete probability distributions)
连续型概率分布(Continuous probability distributions)
最大似然估计(Maximum Likelihood Estimation,MLE)
对数似然(log likelihood)
负对数似然(negative log-likelihood)
Reference
似然函数(likelihood function)
Overview
在机器学习中,似然函数是一种关于模型中参数的函数。“似然性(likelihood)”和”概率(probability)”词意相似,但在统计学中它们有着完全不同的含义:概率用于在已知参数的情况下,预测接下来的观测结果;似然性用于根据一些观测结果,估计给定模型的参数可能值。
Probability is used to describe the plausibility of some data, given a value for the parameter. Likelihood is used to describe the plausibility of a value for the parameter, given some data.
—from wikipedia[3] ^[3]
[
3]
其数学形式表示为:
假设X XX是观测结果序列,它的概率分布fx f_{x}f
x
依赖于参数θ hetaθ,则似然函数表示为
L(θ∣x)=fθ(x)=Pθ(X=x) L( heta|x)=f_{ heta}(x)=P_{ heta}(X=x)
L(θ∣x)=f
θ
(x)=P
θ
(X=x)
Definition
似然函数针对**离散型概率分布(Discrete probability distributions)和连续型概率分布(Continuous probability distributions)**的定义通常不同.
离散型概率分布(Discrete probability distributions)
假设X XX是离散随机变量,其概率质量函数p pp依赖于参数θ hetaθ,则有
L(θ∣x)=pθ(x)=Pθ(X=x) L( heta|x)=p_{ heta}(x)=P_{ heta}(X=x)
L(θ∣x)=p
θ
(x)=P
θ
(X=x)
L(θ∣x) L( heta|x)L(θ∣x)为参数θ hetaθ的似然函数,x xx为随机变量X XX的输出.
Sometimes the probability of “the value of for the parameter value ” is written as P(X = x | θ) or P(X = x; θ).
连续型概率分布(Continuous probability distributions)
假设X XX是连续概率分布的随机变量,其密度函数(density function)f ff依赖于参数θ hetaθ,则有
L(θ∣x)=fθ(x) L( heta|x)=f_{ heta}(x)
L(θ∣x)=f
θ
(x)
最大似然估计(Maximum Likelihood Estimation,MLE)
假设每个观测结果x xx是独立同分布的,通过似然函数L(θ∣x) L( heta|x)L(θ∣x)求使观测结果X XX发生的概率最大的参数θ hetaθ,即argmaxθf(X;θ) argmax_{ heta}f(X; heta)argmax
θ
f(X;θ) 。
在“模型已定,参数未知”的情况下,使用最大似然估计算法学习参数是比较普遍的。
对数似然(log likelihood)
由于对数函数具有单调递增的特点,对数函数和似然函数具有同一个最大值点。取对数是为了方便计算极大似然估计,MLE中直接求导比价困难,通常先取对数再求导,找到极值点。
负对数似然(negative log-likelihood)
实践中,softmax函数通常和负对数似然(negative log-likelihood,NLL)一起使用,这个损失函数非常有趣,如果我们将其与softmax的行为相关联起来一起理解.首先,让我们写下我们的损失函数:
L(y)=−log(y) L(y)=-log(y)
L(y)=−log(y)
回想一下,当我们训练一个模型时,我们渴望能够找到使得损失函数最小的一组参数(在一个神经网络中,参数指权重weights和偏移biases).
对数函数如下图红线所示:
由于是对概率分布求对数,概率p pp的值为0≤p≤1 0leq{p}leq10≤p≤1,取对数后为红色线条在[0,1] [0,1][0,1]区间中的部分,再对其取负数,得到负对数似然函数如下图所示:
我们希望得到的概率越大越好,因此概率越接近于1,则函数整体值越接近于0,即使得损失函数取到最小值。
最大似然估计的一般步骤如下:
(1) 写出似然函数;
(2) 对似然函数取对数,得到对数似然函数;
(3) 求对数似然函数的关于参数组的偏导数,并令其为0,得到似然方程组;
(4) 解似然方程组,得到参数组的值.
Reference
[1]王海良,李卓恒,林旭鸣.智能问答与深度学习[M].北京:电子工业出版社,2019:19-20.
[2]Lj Miranda.Understanding softmax and the negative log-likelihood.2017.
[link]https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/
[3]wikipedia-likelihood function
[link]https://en.wikipedia.org/wiki/Likelihood_function#Log-likelihood
———————
作者:不一样的雅兰酱
来源:CSDN
原文:https://blog.csdn.net/silver1225/article/details/88914652
版权声明:本文为博主原创文章,转载请附上博文链接!
最新评论