机器学习或者模式识别中,会出现overfitting,而当网络逐渐overfitting时网络权值逐渐变大,因此,为了避免出现overfitting,会给误差函数添加一个惩罚项,常用的惩罚项是所有权重的平方乘以一个衰减常量之和。其用来惩罚大的权值。

The learning rate is a parameter that determines how much an updating step influences the current value of the weights. While weight decay is an additional term in the weight update rule that causes the weights to exponentially decay to zero, if no other update is scheduled.

So let’s say that we have a cost or error function E(w) that we want to minimize. Gradient descent tells us to modify the weights w in the direction of steepest descent in E:

wiwiηEwi,

where η is the learning rate, and if it’s large you will have a correspondingly large modification of the weights wi(in general it shouldn’t be too large, otherwise you’ll overshoot the local minimum in your cost function).

In order to effectively limit the number of free parameters in your model so as to avoid over-fitting, it is possible to regularize the cost function. An easy way to do that is by introducing a zero mean Gaussian prior over the weights, which is equivalent to changing the cost function to E˜(w)=E(w)+λ2w2. In practice this penalizes large weights and effectively limits the freedom in your model. The regularization parameter λ determines how you trade off the original cost E with the large weights penalization.

Applying gradient descent to this new cost function we obtain:

wiwiηEwiηλwi.

The new term ηλwi coming from the regularization causes the weight to decay in proportion to its size.

In your solver you likely have a learning rate set as well as weight decay.  lr_mult indicates what to multiply the learning rate by for a particular layer.  This is useful if you want to update some layers with a smaller learning rate (e.g. when finetuning some layers while training others from scratch) or if you do not want to update the weights for one layer (perhaps you keep all the conv layers the same and just retrain fully connected layers).  decay_mult is the same, just for weight decay.

参考资料:http://stats.stackexchange.com/questions/29130/difference-between-neural-net-weight-decay-and-learning-rate

     http://blog.csdn.net/u010025211/article/details/50055815

     https://groups.google.com/forum/#!topic/caffe-users/8J_J8tc1ZHc

视觉层(Vision Layers)及参数

所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数

本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。

1、Convolution层:

就是卷积层,是卷积神经网络(CNN)的核心层。

层类型:Convolution

  lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

在后面的convolution_param中,我们可以设定卷积层的特有参数。

必须设置的参数:

    num_output: 卷积核(filter)的个数

    kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定

其它参数:

     stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。

     pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。

      weight_filler: 权值初始化。 默认为“constant”,值全为0,很多时候我们用”xavier”算法来进行初始化,也可以设置为”gaussian”
      bias_filler: 偏置项的初始化。一般设置为”constant”,值全为0。
      bias_term: 是否开启偏置项,默认为true, 开启
      group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。
 
输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
示例:

复制代码

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

复制代码

  2、Pooling层
也叫池化层,为了减少运算量和数据维度而设置的一种层。
层类型:Pooling
必须设置的参数:
     kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。
其它参数:
   pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC
  pad: 和卷积层的pad的一样,进行边缘扩充。默认为0
  stride: 池化的步长,默认为1。一般我们设置为2,即不重叠。也可以用stride_h和stride_w来设置。
 示例:

复制代码

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

复制代码

pooling层的运算方法基本是和卷积层是一样的。

输入:n*c*w0*h0
输出:n*c*w1*h1
和卷积层的区别就是其中的c保持不变
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.
 
3、Local Response Normalization (LRN)层
此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能

 层类型:LRN
参数:全部为可选,没有必须
  local_size: 默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
  alpha: 默认为1,归一化公式中的参数。
  beta: 默认为5,归一化公式中的参数。
  norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。
 
归一化公式:对于每一个输入, 去除以caffe 中base_lr、weight_decay、lr_mult、decay_mult代表什么意思?-风君雪科技博客,得到归一化后的输出
 
示例:

复制代码

layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

复制代码

4、im2col层

如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

看一看图就知道了:

caffe 中base_lr、weight_decay、lr_mult、decay_mult代表什么意思?-风君雪科技博客

在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。

看看两种卷积操作的异同:

caffe 中base_lr、weight_decay、lr_mult、decay_mult代表什么意思?-风君雪科技博客