pandas 排序之 sort_values,reindex,reset_index, sort_index
如果想按照自己的方式排序
ind = 行索引
data= data[ind]
ind = data.sum(axis=1).sort_values(ascending=False).index
data = data.loc[ind,:]
data.reset_index()
注意:有时候 reset_index 方法会重新定义一个index列,此时可用 data.index = range(data.shape[0])
## 参数
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’)
#### 参数说明
axis:{0 or ‘index’, 1 or ‘columns’}, default 0,默认按照索引排序,即纵向排序,如果为1,则是横向排序
by:str or list of str;如果axis=0,那么by=”列名”;如果axis=1,那么by=”行名”;
ascending:布尔型,True则升序,可以是[True,False],即第一字段升序,第二个降序
inplace:布尔型,是否用排序后的数据框替换现有的数据框
kind:排序方法,{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’。似乎不用太关心
na_position : {‘first’, ‘last’}, default ‘last’,默认缺失值排在最后面
## 参数
sort_index(axis=0, level=None, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’, sort_remaining=True, by=None)
#### 参数说明
axis:0按照行名排序;1按照列名排序
level:默认None,否则按照给定的level顺序排列—貌似并不是,文档
ascending:默认True升序排列;False降序排列
inplace:默认False,否则排序之后的数据直接替换原来的数据框
kind:默认quicksort,排序的方法
na_position:缺失值默认排在最后{“first”,”last”}
by:按照那一列数据进行排序,但是by参数貌似不建议使用
参考链接:Pandas—排序sort_values
最新评论