A(签到)
题意:签到
00:01 1A
#include <bits/stdc++.h> using namespace std; typedef long long int LL; #define st first #define nd second #define pb push_back #define mp make_pair #define pll pair <LL, LL> #define pii pair <int, int> #define rep(i,x) for(int i=1;i<=x;i++) const int N = 1e5+7; const int MX = 1e9+7; const LL INF = 1e18+9LL; int main(){ int x; cin>>x; if(x==2)cout<<2; else cout<<1; }
View Code
B(构造)
题意:有长度为n的数列B,Ai表示B中与Bi不同的值的数量,给出数列A,求B
显然
1若Ai不同则Bi一定不同
2一定有n-Ai个数等于Bi
推出相同Ai的个数一定是n-Ai的倍数,其中每组n-Ai个Bi相等,否则无解,有解时方案按之前推论构造即可。
这题开始还没想出来,不应该。。
01:12 2A
#include <bits/stdc++.h> using namespace std; typedef long long int LL; #define st first #define nd second #define pb push_back #define mp make_pair #define pll pair <LL, LL> #define pii pair <int, int> #define rep(i,x) for(int i=1;i<=x;i++) const int N = 1e5+7; const int MX = 1e9+7; const LL INF = 1e18+9LL; int a[N],sum[N],ans[N],lim[N]; vector<int> b[N]; int main(){ int n; cin>>n; rep(i,n){ scanf("%d",&a[i]); b[a[i]].pb(i); sum[a[i]]++; } for(int i=0;i<n;i++){ if(sum[i]%(n-i)){ cout<<"Impossible"; return 0; } lim[i]=n-i; } cout<<"Possible"<<endl; int cnt=1; for(int i=0;i<n;i++){ for(int j=0;j<b[i].size();j++){ ans[b[i][j]]=cnt; if((j+1)%lim[i]==0)cnt++; } } rep(i,n)cout<<ans[i]<<" "; return 0; }
View Code
C(dp)
题意:给n个方格涂m种颜色,有k个方格和左边的方格颜色不同,求方案数。(n<=2000,m<=2000)
f[i][j]=f[i-1][j]+(m-1)*f[i-1][j-1],输出f[n][k]即可。数组可以滚动,但没必要。O(nk)
或者直接推公式也不难
00:23 1A
#include <bits/stdc++.h> using namespace std; typedef long long int LL; #define st first #define nd second #define pb push_back #define mp make_pair #define pll pair <LL, LL> #define pii pair <int, int> #define rep(i,x) for(int i=1;i<=x;i++) const int N = 2e3+7; const int MX = 1e9+7; const LL INF = 1e18+9LL; const LL mod=998244353; LL dp[N][N]; int main(){ int n,m,k; cin>>n>>m>>k; dp[0][0]=1; rep(i,n) for(int j=0;j<i&&j<=k;j++){ if(j==0){ dp[i][j]=m; continue;} dp[i][j]=((dp[i-1][j-1]*(m-1))%mod+dp[i-1][j])%mod; } cout<<dp[n][k]; }
View Code
D(MST)
题意:给出一个加权无向图,有k个特殊结点。定义路径长度为路径上的最大边权,求这k个结点到其他特殊结点最短路的最大值。
定义开始看起来很绕,后来一想其实类似货车运输。首先最短路一定在最小生成树上取到,观察样例可以猜想所有最大值相等。事实上,考虑kruskal算法过程,当一条边被加入时,如果他两边的并查集都含有特殊结点,那么答案一定不比这条边小,因为树上的路径唯一,两边的特殊结点间的路径一定包含这条边,据此也可发现所有结点的答案一定都相等。所以只需在kruskal执行时维护每个并查集的大小,当加入一条边后有一个并查集大小为k时,说明所有特殊结点已经联通,之后的边都不会影响答案,而当前加入的这条边一定连接了两个特殊结点,所以这条边的权值就是所有特殊结点的最大值。
比赛的时候没时间做了,想到了最小生成树,开始猜想最大值相等但是之后又想错了,主要还是开始理解题意耽误太多时间了。
#include <bits/stdc++.h> using namespace std; typedef long long int LL; #define st first #define nd second #define pb push_back #define mp make_pair #define pll pair <LL, LL> #define pii pair <int, int> #define rep(i,x) for(int i=1;i<=x;i++) const int N=1e5+7; struct st { int u,v,w; }edge[N]; int f[N],ans[N],is[N],sz[N]; int n,m,k; int cmp(st a,st b){ return a.w<b.w; } int finde(int x) { if(x!=f[x]) f[x]=finde(f[x]); return f[x]; } int make(int a,int b) { int x=finde(a); int y=finde(b); f[x]=y; sz[y]+=sz[x]; return sz[y]==k; } int main(){ scanf("%d%d%d",&n,&m,&k); rep(i,k){ int x; scanf("%d",&x); is[x]=1; } rep(i,m) { int a,b,c; scanf("%d%d%d",&a,&b,&c); edge[i].u=a; edge[i].v=b; edge[i].w=c; } for(int i=1;i<=n;i++) { f[i]=i; if(is[i])sz[i]=1; } sort(edge+1,edge+m+1,cmp); rep(i,m) { int u=edge[i].u; int v=edge[i].v; if(finde(u)!=finde(v)) { if(make(u,v)){ rep(j,k)cout<<edge[i].w<<" "; return 0; } } } return 0; }
View Code
E(数学,构造)
题意:长度为n(n为偶数)的数列A的任意项前缀和为完全平方数,给出所有偶数项,求数列A,若有解保证存在1e13之内的解。(n<=1e5,Ai<=2e5)
令Bi为A的前i项和,令B2*i=p^2,B2*I-1=q^2,则A2*i=p^2-q^2=(q+p)*(p-q),显然p-q<sqrt(Ai),因此枚举p-q的值,即可解出p和q。因为要保证B递增,所以要取使p最小的可行解,这样
之后的选择空间更大。O(n*sqrt(Ai))
02:19 3A
#include <bits/stdc++.h> using namespace std; typedef long long int LL; #define st first #define nd second #define pb push_back #define mp make_pair #define pll pair <LL, LL> #define pii pair <int, int> #define rep(i,x) for(int i=1;i<=x;i++) const int N = 1e5+7; const int MX = 1e9+7; const LL INF = 1e18+9LL; LL ans[N],a[N]; int main(){ int n; cin>>n; int cnt=0; rep(i,n/2){ LL x; cin>>x; a[i*2]=x; LL j; for(j=sqrt(x);j>=1;j--){ if(j*j==x)j--; if(!j)break; if(x%j==0&&(x/j-j)%2==0&&(x/j-j)/2>ans[cnt]){ ans[++cnt]=(x/j-j)/2; ans[++cnt]=(x/j+j)/2; break; } } if(j==0){ cout<<"No"; return 0; } } cout<<"Yes"<<endl; LL now=0; for(int i=1;i<n;i+=2){ cout<<ans[i]*ans[i]-now<<" "<<a[i+1]<<" "; now=ans[i+1]*ans[i+1]; } }
View Code
标答是O(Ai*log(Ai))的,还没仔细看,先贴这里。
Let , xmax = 2 × 105.
Since x2i = s2i - s2i - 1 = t2i2 - t2i - 12 ≥ (t2i - 1 + 1)2 - t2i - 12 = 2t2i - 1 + 1, so 2t2i - 1 + 1 ≤ xmax, t2i - 1 < xmax.
For every , we can precalculate all possible (a, b)s so that x = b2 - a2: enumerate all possible a , then for every a enumerate b from small to large starting from a + 1 and stop when b2 - a2 > xmax, record this (a, b) for x = b2 - a2. Since , then , its complexity is .
Now, we can try to find a possible s from left to right. Since x2i - 1 is positive, we need to ensure t2i - 2 < t2i - 1. Becuase x2i = t2i2 - t2i - 12, we can try all precalculated (a, b)s such that x2i = b2 - a2. If we have several choices, we should choose the one that a is minimum possible, because if the current sum is bigger, it will be harder for the remaining number to keep positive.
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<int,int> pii; int n; ll sq[100099]; #define S 200000 vector<pii> v[S+55]; int main() { for(int i=1;i<=S;++i) { if(i*2+1>S) break; for(int j=i+1;j*(ll)j-i*(ll)i<=S;++j) v[j*(ll)j-i*(ll)i].push_back(pii(i,j)); } scanf("%d",&n); for(int i=2;i<=n;i+=2) { int x; scanf("%d",&x); for(auto t:v[x]) if(sq[i-2]<t.first) { sq[i-1]=t.first,sq[i]=t.second; break; } if(!sq[i-1]) {puts("No"); return 0;} } puts("Yes"); for(int i=1;i<=n;++i) printf("%lld%c",sq[i]*(ll)sq[i]-sq[i-1] *(ll)sq[i-1]," "[i==n]); }
View Code
最新评论