2018-10-14 09:37:04
VOT-2016 官网:http://www.votchallenge.net/vot2016/
评测代码链接:https://github.com/votchallenge/vot-toolkit
用到的工具: https://codeload.github.com/votchallenge/trax/zip/master
参考博文:
https://blog.csdn.net/sgfmby1994/article/details/78776465
https://blog.csdn.net/yao1131/article/details/78783236
Some Important Files:
1. Pre-trained pyMDNet models (pre-trained on VOT or OTB dataset and testing for OTB and VOT, respectively):
链接: https://pan.baidu.com/s/1ImnL8HHLdzgt6JyMYhk0YQ 提取码: bafq
2. pyMDNet code running successfully on VOT-2016 dataset:
链接: https://pan.baidu.com/s/11yTqfUSq8FmzdRviWITr7Q 提取码: c54h
warning:you need to install pyTorch 2.0 according to:
sudo pip install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl
1. 第一步执行:toolkit_path.m
2. 第二部执行:workspace_create.m
>> workspace_create
Select one of the available experiment stacks:
1 – test
2 – vot2013
3 – vot2014
4 – vot2015
5 – vot2016
6 – vot2017
7 – vot2018
8 – votlt2018
9 – vottir2015
10 – vottir2016
Selection: 5
Input an unique identifier for your tracker: attentionMDNet
Is your tracker written in any of the following languages?
1 – “Matlab”
2 – “Python”
3 – “C/C++”
4 – “Octave”
5 – “None of the above”
Selected option: 1
Verifying native components …
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
使用 ‘Microsoft Visual C++ 2013 Professional’ 编译。
MEX 已成功完成。
***************************************************************************
The VOT workspace has been configured
Please edit the tracker_attentionMDNet.m file to configure your tracker.
Then run run_test.m script to make sure that the tracker is working.
To run the experiments execute the run_experiments.m script.
***************************************************************************
【注意】在这个过程中,有可能遇到 trax 的错误:
Downloading TraX source from: https://github.com/votchallenge/trax/archive/master.zip
Please wait … Unable to unpack TraX source code.
这个时候,我们可以手工下载解压这个软件,放到下图这个路径下:
要么就是你当前的 gcc 版本不匹配导致的,出现如下所示的错误,建议你将 gcc 换成 gcc-4.8 版本,然后重新编译就可以了。怎么换?建议看看这个博文:https://www.cnblogs.com/wangxiaocvpr/p/5385961.html
>> run_experiments
Initializing workspace ...
Checking for toolkit updates on GitHub.
Verifying native components ...
Loading sequences ...
Testing TraX protocol support for tracker run_vot.
Tracker execution interrupted: Invalid MEX-file '/home/vot-toolkit/native/traxclient.mexa64': /usr/local/MATLAB/R2017a/bin/glnxa64/../../sys/os/glnxa64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found (required by /home/vot-toolkit/native/traxclient.mexa64).
TraX support not detected.
Error using tracker_load (line 128)
Tracker has not passed the TraX support test.
Error in run_experiments (line 8)
tracker = tracker_load('run_vot');
这个步骤执行完毕后,会生成几个文件,如下所示:
3. 打开 tracker_attentionMDNet.m,我们可以看到默认的代码如下:
change the code into the following style:
step-1. command the second line;
step-2. change the line 17 according to your own tracker and path. and do not forget to add a ‘/’ at the end of the file path.
4. open the run_experiments.m and run this script. It will begin to download the VOT-2016 dataset, just hold on …
>> run_experiments
Initializing workspace …
Checking for toolkit updates on GitHub.
Verifying native components …
Loading sequences …
Downloading sequence dataset “VOT2016 Challenge” with 60 sequences.
Downloading sequence “bag” …
Downloading sequence “ball1” …
…
when the dataset is downloaded, it shown me the following errors:
Testing TraX protocol support for tracker attentionMDNet.
Tracker execution interrupted: Unable to establish connection.
TraX support not detected.
Error using tracker_load (line 127)
Tracker has not passed the TraX support test.
Error in run_experiments (line 8)
tracker = tracker_load(‘attentionMDNet’);
according to this blog: https://blog.csdn.net/HUSTbest_/article/details/80248610
==>>> Ok, now let’s compile this tracker first and check if it can success? yes, it indeed successfully run.
跑别人的算法成功了,但是自己的算法,还是不行啊。为什么呢?我们再仔细看下这个成功运行的 tracker,这个文件夹里面有一个 vot.m 函数,但是我们自己的跟踪算法文件夹中,却没有这个!god, damn it!
OK,知道是怎么回事了,就可以拷贝一份到我们自己的算法文件夹中就行了。执行后,发现可以正常进行 Trax 的通信了。
但是,这只是其中的一个步骤,我们必须得修改我们的代码,以使得满足 VOT 评测的格式以及运行方式。来,深呼吸,一步一步来:
reference blog: https://blog.csdn.net/aiqiu_gogogo/article/details/79454997
But we still find following errors when rewrite the code according to the reference tracker:
>> run_experiments
Initializing workspace …
Verifying native components …
WARNING: No configuration for tracker VOT_mdnet found
93 context = iterate(experiments, trackers, sequences, ‘iterator’, iterator, ‘context’, context);
Experiment baseline
Tracker VOT_mdnet
Sequence bag
Repetition 1
Tracker execution interrupted: First argument must be a string
Error using traxclient
First argument must be a string
Error in tracker_run (line 78)
data = traxclient(tracker.command, callback, …
Error in experiment_supervised (line 71)
data = tracker_run(tracker, @callback, data);
Error in tracker_evaluate (line 57)
[files, metadata] = experiment_function(tracker, sequence, directory, parameters, scan);
Error in workspace_evaluate>execute_iterator (line 128)
tracker_evaluate(event.tracker, event.sequence, event.experiment);
Error in iterate (line 69)
context = iterator(event, context);
Error in workspace_evaluate (line 93)
context = iterate(experiments, trackers, sequences, ‘iterator’, iterator, ‘context’, context);
Error in run_experiments (line 10)
workspace_evaluate(tracker, sequences, experiments);
==>> How to solve ??? This maybe caused by your own code. you need to re-write the code and make it compactable with VOT evaluation tools.
When evaluation, you just run the run_analysis.m:
% This script can be used to perform a comparative analyis of the experiments in the same manner as for the VOT challenge
% You can copy and modify it to create a different analyis
addpath('/media/wangxiao/49cd8079-e619-4e4b-89b1-15c86afb5102/aaai_2019/aaai2019_attentionTracking/vot-toolkit'); toolkit_path; % Make sure that VOT toolkit is in the path
[sequences, experiments] = workspace_load();
% error('Analysis not configured! Please edit run_analysis.m file.'); % Remove this line after proper configuration
trackers = tracker_list('run_vot_V2'); % TODO: add more trackers here
workspace_analyze(trackers, sequences, experiments, 'report_AAAI2019_pyMDNet_AttentionV2', 'Title', 'Report for vot2016');
Then you can find the generated evaluation report as shown in above figures.
最新评论