本篇文章给大家带来的内容是关于python中的排序操作和heapq模块的介绍(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
说到排序,很多人可能第一想到的就是sorted,但是你可能不知道python中其实还有还就中方法哟,并且好多种场景下效率都会比sorted高。那么接下来我就依次来介绍我所知道的排序操作。
sorted(iterable, *, key=None, reverse=False)
list1=[1,6,4,3,9,5] list2=['12','a6','4','c34','b9','5'] print(sorted(list1)) #[1, 3, 4, 5, 6, 9] print(sorted(list2)) #['12', '4', '5', 'a6', 'b9', 'c34'] #总结上面两种排序:字符串排序根据元素首字符的ASCII比较进行排序, #数字类型按照大小排序,数字不能混合排序 list3=[ {'name':'jim','age':23,'price':500}, {'name':'mase','age':23,'price':600}, {'name':'tom','age':25,'price':2000}, {'name':'alice','age':22,'price':300}, {'name':'rose','age':21,'price':2400}, ] print(sorted(list3,key=lambda s:(s['age'],s['price']))) #[{'name': 'rose', 'age': 21, 'price': 2400}, {'name': 'alice', 'age': 22, 'price': 300}, {'name': 'jim', 'age': 23, 'price': 500}, {'name': 'mase', 'age': 23, 'price': 600}, {'name': 'tom', 'age': 25, 'price': 2000}] 最后的reverse参数我就不作说明了,就是把结果进行倒序,可用作降序排列 介绍一种比lambda效率高的方式: operator模块中的方法itemgetter >>> itemgetter(1)('ABCDEFG') 'B' >>> itemgetter(1,3,5)('ABCDEFG') ('B', 'D', 'F') >>> itemgetter(slice(2,None))('ABCDEFG') 'CDEFG 运用到上述代码 print(sorted(list3,key=itemgetter('age','price'))) #结果同上但效率会比较高
登录后复制
接下来的排序操作涉及到一个非常重要的一种数据结构——堆,不过今天我主要介绍这个模块中的方法,具体什么是堆,及其还有一种数据结构——栈,有时间我会专门写一篇文章来介绍。
heapq(Python内置的模块)
__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge', 'nlargest', 'nsmallest', 'heappushpop']
登录后复制
接下来我们一一介绍。
nlargest与nsmallest,通过字面意思可以看出方法大致的作用,接下来动手测验
nlargest(n, iterable, key=None) nsmallest(n, iterable, key=None) #n:查找个数 iterable:可迭代对象 key:同sorted list1=[1,6,4,3,9,5] list2=['12','a6','4','c34','b9','5'] list3=[ {'name':'jim','age':23,'price':500}, {'name':'mase','age':23,'price':600}, {'name':'tom','age':25,'price':2000}, {'name':'alice','age':22,'price':300}, {'name':'rose','age':21,'price':2400}, ] from operator import itemgetter import heapq print(heapq.nlargest(len(list1),list1)) print(heapq.nlargest(len(list2),list2)) print(heapq.nlargest(len(list3),list3,key=itemgetter('age','price'))) #以上代码输出结果同sorted print(heapq.nsmallest(len(list1),list1)) print(heapq.nsmallest(len(list2),list2)) print(heapq.nsmallest(len(list3),list3,key=itemgetter('age','price'))) #结果是降序 [1, 3, 4, 5, 6, 9] ['12', '4', '5', 'a6', 'b9', 'c34'] [{'name': 'rose', 'age': 21, 'price': 2400}, {'name': 'alice', 'age': 22, 'price': 300}, {'name': 'jim', 'age': 23, 'price': 500}, {'name': 'mase', 'age': 23, 'price': 600}, {'name': 'tom', 'age': 25, 'price': 2000}]
登录后复制
heappush,heappop,heapify,heapreplace,heappushpop
堆结构特点:heap[0]永远是最小的元素(利用此特性排序)
heapify:对序列进行堆排序, heappush:在堆序列中添加值 heappop:删除最小值并返回 heappushpop:添加并删除堆中最小值且返回,添加之后删除 heapreplace:添加并删除队中最小值且返回,删除之后添加 nums=[54,23,64.,323,53,3,212,453,65] heapify(nums) #先进行堆排序 print(heappop(nums)) #3 print(heappush(nums,50)) #添加操作,返回None print(heappushpop(nums,10)) #由于是添加后删除,所以返回10 print(heappop(nums)) #23 print(heapreplace(nums,10)) #和heappushpop,返回50 print(nums) #[10, 53, 54, 65, 323, 64.0, 212, 453]
登录后复制
merge:合并多个序列
list1 = [1, 2, 3, 4, 5, 12] set1 = {2, 3, 9, 23, 54} s = list(merge(list1,set1)) print(s) #[1, 2, 2, 3, 3, 4, 5, 9, 12, 54, 23] #发现输出结果不仅进行了合并,还进行了排序,有意思哈,可是换个代码测验,你再看一下 list1 = [31, 2, 83, 24, 5, 12] set1 = {2, 83, 9, 23, 54} s = list(merge(list1,set1)) print(s) #[2, 9, 31, 2, 83, 24, 5, 12, 83, 54, 23] #你们肯定想这是什么鬼,一点都没有头绪,其实经过我的多次测验,还是有规律的,但是由于没有什么作用就不大篇幅说明了,喜欢刨根问题的小伙伴可以尝试自己思考一下。
登录后复制
小伙伴们有没有想我为何介绍这个模块,并且和排序放在一起呢,其实在很多时候我们需要找序列中的前几个最大值或者最小值,使用此模块中的方法是最好不过的了。
如果需要全部排序我们使用sorted,需要查找最大或最小的几个或者多个我们使用alargest/asmallest,查找最大最小使用max/min
以上就是python中的排序操作和heapq模块的介绍(代码示例)的详细内容,更多请关注风君子博客其它相关文章!
最新评论