问题
有Alice和Bob两个人,随机给他们两个数x和y(0或1),然后A和B根据他们得到数(x和y)给两个个数a和b(0或1)。
规则如下:
如果输入的x和y都是1,那么,Alice和Bob给出不一样的数获胜;否则,Alice和Bob给出相同的数获胜。
Alice和Bob在拿到x和y后就不能交谈了,但是在拿到前可以交流。
问:Alice和Bob怎样约定获胜的可能性最大?
一共有以下十六中情况:
x | y | a | b | result |
---|---|---|---|---|
0 | 0 | 0 | 0 | 赢 |
0 | 0 | 0 | 1 | 输 |
0 | 0 | 1 | 0 | 输 |
0 | 0 | 1 | 1 | 赢 |
0 | 1 | 0 | 0 | 赢 |
0 | 1 | 0 | 1 | 输 |
0 | 1 | 1 | 0 | 输 |
0 | 1 | 1 | 1 | 赢 |
1 | 0 | 0 | 0 | 赢 |
1 | 0 | 0 | 1 | 输 |
1 | 0 | 1 | 0 | 输 |
1 | 0 | 1 | 1 | 赢 |
1 | 1 | 0 | 0 | 输 |
1 | 1 | 0 | 1 | 赢 |
1 | 1 | 1 | 0 | 赢 |
1 | 1 | 1 | 1 | 输 |
经典解法
我们可以看到,如果Alice和Bob随机输出a和b,即输出的a和b与输入的x和y无关,那么他们获胜了可能性是50%,也就是0.5。
如果有提前约定呢?
当输入x和y都是0的时候,Alice和Bob可以约定都出0(约定都出1也是一样的道理),这样,输入是(0,0)的25%可能是一定获胜。
但是当你的输入是1的时候,你不知道另一个人是的输入是0还是1。
如果约定出0,即,无论输入是什么都出0,则,获胜的可能性是75%,只有输入是(1,1)时失败。
如果约定出1,即,输入什么输出什么,则获胜的可能性是25%,只有输入是(0,0)才获胜。
如果约定一个出0一个出1(假设A遇1出1,B遇1出0),则成功率75%,只有在输入是(1,0)时失败。
综上,在经典解法中,成功的概率最大是0.75。
量子解法
首先我们给Alice和Bob一对bell态的量子比特((|psiangle=frac{1}{sqrt2}|00angle + frac{1}{sqrt2}|11angle=frac{1}{sqrt2}|++angle + frac{1}{sqrt2}|–angle))
然后他们分别根据自己的输入对自己量子比特测量,测量结果就是他们的输出。
测量方式如下:
如果Alice的输入是0,那么就在(| 0angle)、(| 1angle)基测量,如果输入是1,就在(| uangle)、(| u’angle)基测量。
如果Bob的输入是0,那么就在(| vangle)、(| v’angle)基测量,如果输入是1,就在(| wangle)、(| w’angle)基测量。
这样的获胜的可能性是多少呢?
如果输入是(0,0):因为Alice的输入是0,所以Alice用(| 0angle)、(| 1angle)基测量,测量在不在(| 0angle),在的话输出1,不在输出0,并且可以知道他在(| 1angle)。此时,因为Alice和bob的量子是纠缠的,Bob的量子比特也会坍缩到(| 0angle)或者(| 1angle)的位置。Bob的输入也是0,所以Bob要在(| vangle)、(| v’angle)基测量,看量子在不在(| vangle)。如果Alice的量子最终坍缩到了(| 0angle),在(| vangle)测量得到1的概率为(cos^2frac{pi}{8}),因为(| 0angle)和(| vangle)之间的夹角是(frac{pi}{8}),则有(cos^2frac{pi}{8})的概率成功,如果Alice的量子坍缩到了(| 1angle),则Alice的输出为0,在在(| vangle)测量得到1的概率为(cos^2frac{3pi}{8}),但是这个时候输出0才会获胜,所以成功的概率依旧是(cos^2frac{3pi}{8})。
其他输入的情况,按照上述过程,获胜的概率也都是(cos^2frac{3pi}{8}),则总的获胜概率是(cos^2frac{3pi}{8} approx 0.85)
结论
量子解法的最大成功率 (>) 经典解法的最大成功率
[0.85 > 0.75
]
量子纠缠存在
参考资料:
最新评论