本文介绍一个基于pytorch的电影推荐系统

代码移植自https://github.com/chengstone/movie_recommender。

原作者用了tf1.0实现了这个基于movielens的推荐系统,我这里用pytorch0.4做了个移植。

本文实现的模型Github仓库:https://github.com/Holy-Shine/movie_recommend_system

1. 总体框架

先来看下整个文件包下面的文件构成:

基于pytorch的电影推荐系统-风君雪科技博客

其中:

Params: 保存模型的参数文件以及模型训练后得到的用户和电影特征向量

data.p:保存了训练和测试数据

dataset.py:继承于pytorch的Dataset类,是一个数据batch的generator

model.py:推荐系统的pytorch模型实现

main.py:主要的训练过程

recInterface.py: 推荐系统训练完毕后,根据模型的中间输出结果作为电影和用户的特征向量,这个推荐接口根据这些向量的空间关系提供一些定向推荐结果

test.py: 无用,纯用来测试输入维度是否和模型match

2. 数据集接口dataset.py

dataset.py 加载 data.p 到内存,用生成器的方式不断形成指定batch_size大小的批数据,输入到模型进行训练。我们先来看看这个data.p 长什么样。

data.p 实际上是保存了输入数据的pickle文件,加载完毕后是一个pandas(>=0.22.0)的DataFrame对象(如下图所示)

基于pytorch的电影推荐系统-风君雪科技博客

用下面代码可以加载和观察数据集(建议使用 jupyternotebook )

import pickle as pkl
data = pkl.load(open('data.p','rb'))
data

下面来看看数据加载类怎么实现:

class MovieRankDataset(Dataset):

    def __init__(self, pkl_file):
        self.dataFrame = pkl.load(open(pkl_file,'rb'))
    def __len__(self):
        return len(self.dataFrame)
    def __getitem__(self, idx):
        # user data
        uid = self.dataFrame.ix[idx]['user_id']
        gender = self.dataFrame.ix[idx]['user_gender']
        age = self.dataFrame.ix[idx]['user_age']
        job = self.dataFrame.ix[idx]['user_job']
        
        # movie data
        mid = self.dataFrame.ix[idx]['movie_id']
        mtype=self.dataFrame.ix[idx]['movie_type']
        mtext=self.dataFrame.ix[idx]['movie_title']

        # target
        rank = torch.FloatTensor([self.dataFrame.ix[idx]['rank']])
        user_inputs = {
            'uid': torch.LongTensor([uid]).view(1,-1),
            'gender': torch.LongTensor([gender]).view(1,-1),
            'age': torch.LongTensor([age]).view(1,-1),
            'job': torch.LongTensor([job]).view(1,-1)
        }

        movie_inputs = {
            'mid': torch.LongTensor([mid]).view(1,-1),
            'mtype': torch.LongTensor(mtype),
            'mtext': torch.LongTensor(mtext)
        }


        sample = {
            'user_inputs': user_inputs,
            'movie_inputs':movie_inputs,
            'target':rank
        }
        return sample

pytorch要求自定义类实现三个函数:

__init__()用来初始化一些东西
__len__() 用来获取整个数据集的样本个数
__getitem(idx)__根据索引idx获取相应的样本

重点看下__getiem(idx)__,主要使用dataframe的dataFrame.ix[idx]['user_id']来获取相应的属性。由于整个模型是用户+电影双通道输入,所以最后将提取的属性组装成两个dict,最后再组成一个sample返回。拆解过程在训练时进行。(组装时提前用torch.tensor()将向量转为pytorch支持的tensor张量)

3. 推荐模型model.py

先看一下我们要实现的模型图:

基于pytorch的电影推荐系统-风君雪科技博客

(注:图片来自原作者仓库)

pytorch依然要求用户自定义的模型类至少实现两个方法:__init__()__forward__(),其中__init__()用来初始化(定义一些pytorch的线性层、卷积层、embedding层等等),__forward__()用来前向传播和反向传播误差梯度信息。

分别来看下model.py里的这两个函数:

3.1 初始化函数

def __init__(self, user_max_dict, movie_max_dict, convParams, embed_dim=32, fc_size=200):
    '''

        Args:
            user_max_dict: the max value of each user attribute. {'uid': xx, 'gender': xx, 'age':xx, 'job':xx}
            user_embeds: size of embedding_layers.
            movie_max_dict: {'mid':xx, 'mtype':18, 'mword':15}
            fc_sizes: fully connect layer sizes. normally 2
        '''

    super(rec_model, self).__init__()

    # --------------------------------- user channel ----------------------------------------------------------------
    # user embeddings
    self.embedding_uid = nn.Embedding(user_max_dict['uid'], embed_dim)
    self.embedding_gender = nn.Embedding(user_max_dict['gender'], embed_dim // 2)
    self.embedding_age = nn.Embedding(user_max_dict['age'], embed_dim // 2)
    self.embedding_job = nn.Embedding(user_max_dict['job'], embed_dim // 2)

    # user embedding to fc: the first dense layer
    self.fc_uid = nn.Linear(embed_dim, embed_dim)
    self.fc_gender = nn.Linear(embed_dim // 2, embed_dim)
    self.fc_age = nn.Linear(embed_dim // 2, embed_dim)
    self.fc_job = nn.Linear(embed_dim // 2, embed_dim)

    # concat embeddings to fc: the second dense layer
    self.fc_user_combine = nn.Linear(4 * embed_dim, fc_size)

    # --------------------------------- movie channel -----------------------------------------------------------------
    # movie embeddings
    self.embedding_mid = nn.Embedding(movie_max_dict['mid'], embed_dim)  # normally 32
    self.embedding_mtype_sum = nn.EmbeddingBag(movie_max_dict['mtype'], embed_dim, mode='sum')

    self.fc_mid = nn.Linear(embed_dim, embed_dim)
    self.fc_mtype = nn.Linear(embed_dim, embed_dim)

    # movie embedding to fc
    self.fc_mid_mtype = nn.Linear(embed_dim * 2, fc_size)

    # text convolutional part
    # wordlist to embedding matrix B x L x D  L=15 15 words
    self.embedding_mwords = nn.Embedding(movie_max_dict['mword'], embed_dim)

    # input word vector matrix is B x 15 x 32
    # load text_CNN params
    kernel_sizes = convParams['kernel_sizes']
    # 8 kernel, stride=1,padding=0, kernel_sizes=[2x32, 3x32, 4x32, 5x32]
    self.Convs_text = [nn.Sequential(
        nn.Conv2d(1, 8, kernel_size=(k, embed_dim)),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=(15 - k + 1, 1), stride=(1, 1))
    ).to(device) for k in kernel_sizes]

    # movie channel concat
    self.fc_movie_combine = nn.Linear(embed_dim * 2 + 8 * len(kernel_sizes), fc_size)  # tanh

    # BatchNorm layer
    self.BN = nn.BatchNorm2d(1)

__init__() 有5个参数:

user_max_dict/movie_max_dict:用户/电影字典,即用户/电影的一些属性的最大值,决定我们的模型的embedding表的宽度。

user_max_dict={
    'uid':6041,  # 6040 users
    'gender':2,
    'age':7,
    'job':21
}

movie_max_dict={
    'mid':3953,  # 3952 movies
    'mtype':18,
    'mword':5215   # 5215 words
}

在我们的模型中,这些字典作为固定的参数被传入。

convParams:文本卷积网络超参,表示网络层数和卷积核大小。

convParams={
    'kernel_sizes':[2,3,4,5]
}

embed_dim:全局的embed大小,表示特征空间的维度。

fc_size: 最后的全连接神经元个数

最后分别根据用户通道定义一些全连接层、embedding层、文本卷积层(标题文本已经被one-hot化存入数据集中)

3.2 前向传播

直接看代码吧:

def forward(self, user_input, movie_input):
    # pack train_data
    uid = user_input['uid']
    gender = user_input['gender']
    age = user_input['age']
    job = user_input['job']

    mid = movie_input['mid']
    mtype = movie_input['mtype']
    mtext = movie_input['mtext']
    if torch.cuda.is_available():
        uid, gender, age, job,mid,mtype,mtext = 
        uid.to(device), gender.to(device), age.to(device), job.to(device), mid.to(device), mtype.to(device), mtext.to(device)
        # user channel
        feature_uid = self.BN(F.relu(self.fc_uid(self.embedding_uid(uid))))
        feature_gender = self.BN(F.relu(self.fc_gender(self.embedding_gender(gender))))
        feature_age =  self.BN(F.relu(self.fc_age(self.embedding_age(age))))
        feature_job = self.BN(F.relu(self.fc_job(self.embedding_job(job))))

        # feature_user B x 1 x 200
        feature_user = F.tanh(self.fc_user_combine(
            torch.cat([feature_uid, feature_gender, feature_age, feature_job], 3)
        )).view(-1,1,200)

        # movie channel
        feature_mid = self.BN(F.relu(self.fc_mid(self.embedding_mid(mid))))
        feature_mtype = self.BN(F.relu(self.fc_mtype(self.embedding_mtype_sum(mtype)).view(-1,1,1,32)))

        # feature_mid_mtype = torch.cat([feature_mid, feature_mtype], 2)

        # text cnn part
        feature_img = self.embedding_mwords(mtext)  # to matrix B x 15 x 32
        flattern_tensors = []
        for conv in self.Convs_text:
            flattern_tensors.append(conv(feature_img.view(-1,1,15,32)).view(-1,1, 8))  # each tensor: B x 8 x1 x 1 to B x 8

            feature_flattern_dropout = F.dropout(torch.cat(flattern_tensors,2), p=0.5)  # to B x 32

            # feature_movie B x 1 x 200
            feature_movie = F.tanh(self.fc_movie_combine(
                torch.cat([feature_mid.view(-1,1,32), feature_mtype.view(-1,1,32), feature_flattern_dropout], 2)
            ))

            output = torch.sum(feature_user * feature_movie, 2)  # B x rank
            return output, feature_user, feature_movie

分为两步:

拆解数据:根据用户和电影dict的键值拆解sample里的数据
前向传播:没有特别的,就是用__init__()定义的网络层来传递张量即可。

4. 主程序main.py

还是先来看代码:

def train(model,num_epochs=5, lr=0.0001):
    loss_function = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(),lr=lr)

    datasets = MovieRankDataset(pkl_file='data.p')
    dataloader = DataLoader(datasets,batch_size=256,shuffle=True)

    losses=[]
    writer = SummaryWriter()
    for epoch in range(num_epochs):
        loss_all = 0
        for i_batch,sample_batch in enumerate(dataloader):

            user_inputs = sample_batch['user_inputs']
            movie_inputs = sample_batch['movie_inputs']
            target = sample_batch['target'].to(device)

            model.zero_grad()

            tag_rank , _ , _ = model(user_inputs, movie_inputs)

            loss = loss_function(tag_rank, target)
            if i_batch%20 ==0:
                writer.add_scalar('data/loss', loss, i_batch*20)
                print(loss)

            loss_all += loss
            loss.backward()
            optimizer.step()
        print('Epoch {}:	 loss:{}'.format(epoch,loss_all))
    writer.export_scalars_to_json("./test.json")
    writer.close()



if __name__=='__main__':
    model = rec_model(user_max_dict=user_max_dict, movie_max_dict=movie_max_dict, convParams=convParams)
    model=model.to(device)

    # train model
    #train(model=model,num_epochs=1)
    #torch.save(model.state_dict(), 'Params/model_params.pkl')

    # get user and movie feature
    # model.load_state_dict(torch.load('Params/model_params.pkl'))
    # from recInterface import saveMovieAndUserFeature
    # saveMovieAndUserFeature(model=model)


    # test recsys
    from recInterface import getKNNitem,getUserMostLike
    print(getKNNitem(itemID=100,K=10))
    print(getUserMostLike(uid=100))

流程大致如下:

调用 model.py 构建推荐模型。
训练模型train(model,num_epochs=5, lr=0.0001)

选择损失函数
选择优化器Adam
构建数据加载器dataloader
开始训练,反向传播,优化参数

保存模型参数

5. 推荐接口recInterface.py

模型训练结束后,我们可以得到电影的特征和用户的特征(可以看网络图中最后一层连接前两个通道的输出即为用户/电影特征,我们在训练结束后将其返回并保存起来)。

使用recInterface.py里的saveMovieAndUserFeature(model)可以将这两个特征保存为Params/feature_data.pkl,同时保存用户和电影的字典,用来获取特定用户或者电影的信息,格式以用户为例:{'uid':uid,'gender':gender,'age':age,'job':job}

def def saveMovieAndUserFeature(model):
    '''
    Save Movie and User feature into HD

    '''

    batch_size = 256

    datasets = MovieRankDataset(pkl_file='data.p')
    dataloader = DataLoader(datasets, batch_size=batch_size, shuffle=False,num_workers=4)

    # format: {id(int) : feature(numpy array)}
    user_feature_dict = {}
    movie_feature_dict = {}
    movies={}
    users = {}
    with torch.no_grad():
        for i_batch, sample_batch in enumerate(dataloader):
            user_inputs = sample_batch['user_inputs']
            movie_inputs = sample_batch['movie_inputs']


            # B x 1 x 200 = 256 x 1 x 200
            _, feature_user, feature_movie = model(user_inputs, movie_inputs)

            # B x 1 x 200 = 256 x 1 x 200
            feature_user = feature_user.cpu().numpy()
            feature_movie = feature_movie.cpu().numpy()


            for i in range(user_inputs['uid'].shape[0]):
                uid = user_inputs['uid'][i]   # uid
                gender = user_inputs['gender'][i]
                age = user_inputs['age'][i]
                job = user_inputs['job'][i]

                mid = movie_inputs['mid'][i]   # mid
                mtype = movie_inputs['mtype'][i]
                mtext = movie_inputs['mtext'][i]

                if uid.item() not in users.keys():
                    users[uid.item()]={'uid':uid,'gender':gender,'age':age,'job':job}
                if mid.item() not in movies.keys():
                    movies[mid.item()]={'mid':mid,'mtype':mtype, 'mtext':mtext}

                if uid not in user_feature_dict.keys():
                    user_feature_dict[uid]=feature_user[i]
                if mid not in movie_feature_dict.keys():
                    movie_feature_dict[mid]=feature_movie[i]

            print('Solved: {} samples'.format((i_batch+1)*batch_size))
    feature_data = {'feature_user': user_feature_dict, 'feature_movie':movie_feature_dict}
    dict_user_movie={'user': users, 'movie':movies}
    pkl.dump(feature_data,open('Params/feature_data.pkl','wb'))
    pkl.dump(dict_user_movie, open('Params/user_movie_dict.pkl','wb'))(model):
    '''
    Save Movie and User feature into HD

    '''

    batch_size = 256

    datasets = MovieRankDataset(pkl_file='data.p')
    dataloader = DataLoader(datasets, batch_size=batch_size, shuffle=False,num_workers=4)

    # format: {id(int) : feature(numpy array)}
    user_feature_dict = {}
    movie_feature_dict = {}
    movies={}
    users = {}
    with torch.no_grad():
        for i_batch, sample_batch in enumerate(dataloader):
            user_inputs = sample_batch['user_inputs']
            movie_inputs = sample_batch['movie_inputs']


            # B x 1 x 200 = 256 x 1 x 200
            _, feature_user, feature_movie = model(user_inputs, movie_inputs)

            # B x 1 x 200 = 256 x 1 x 200
            feature_user = feature_user.cpu().numpy()
            feature_movie = feature_movie.cpu().numpy()


            for i in range(user_inputs['uid'].shape[0]):
                uid = user_inputs['uid'][i]   # uid
                gender = user_inputs['gender'][i]
                age = user_inputs['age'][i]
                job = user_inputs['job'][i]

                mid = movie_inputs['mid'][i]   # mid
                mtype = movie_inputs['mtype'][i]
                mtext = movie_inputs['mtext'][i]

                if uid.item() not in users.keys():
                    users[uid.item()]={'uid':uid,'gender':gender,'age':age,'job':job}
                if mid.item() not in movies.keys():
                    movies[mid.item()]={'mid':mid,'mtype':mtype, 'mtext':mtext}

                if uid not in user_feature_dict.keys():
                    user_feature_dict[uid]=feature_user[i]
                if mid not in movie_feature_dict.keys():
                    movie_feature_dict[mid]=feature_movie[i]

            print('Solved: {} samples'.format((i_batch+1)*batch_size))
    feature_data = {'feature_user': user_feature_dict, 'feature_movie':movie_feature_dict}
    dict_user_movie={'user': users, 'movie':movies}
    pkl.dump(feature_data,open('Params/feature_data.pkl','wb'))
    pkl.dump(dict_user_movie, open('Params/user_movie_dict.pkl','wb'))

recInterface.py还有其他的功能函数:

getKNNitem(itemID,itemName='movie',K=1): 根据项目的id得到K近邻项目,如果itemName='user',那么就是获取K近邻的用户。

逻辑很简单:

根据itemName提取保存在本地的相应的用户/电影特征集合
根据itemID获取目标用户的特征
求其特征与其他所有用户/电影的cosine相似度
排序后返回前k个用户/电影即可

getUserMostLike(uid): 获取用户id为uid的用户最喜欢的电影

过程也很容易理解:

依次对uid对应的用户特征和所有电影特征做一个点积操作
该点击操作视为用户对电影的评分,对这些评分做一个sort操作
返回评分最高的即可。

6. 声明

大家有问题可以直接在Github仓库的issue里提问。

https://github.com/Holy-Shine/movie_recommend_system