1、定义:

       非极大值抑制算法NMS广泛应用于目标检测算法,其目的是为了消除多余的候选框,找到最佳的物体检测位置。

2、原理:

       使用深度学习模型检测出的目标都有多个框,如下图,针对每一个被检测目标,为了得到效果最好的那一个,需要使用一定的过滤技术把多余的框过滤掉。NMS应运而生。

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

现,假设有一个候选BOXES的集合B和其对应的SCORES集合S:

1、找出分数最高的那个框M;

2、将M对应的BOX从B中删除;

3、将删除的BOX添加到集合D中;

4、从B中删除与M对应的BOX重叠区域大于阈值Nt的其他框;

5、重复上述步骤1到4。

伪代码如下:

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

 其中Si可表述成:

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

 源代码如下:

1、在FastRCNN中的python实现:

def nms(dets,thresh):
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]

    scores = dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size>0:
        i=order[0]
        keep.append(i)
        xx1=np.maximum(x1[i],x1[order[1:]])
        yy1=np.maximum(y1[i],y1[order[1:]])
        xx2=np.minimum(x2[i],x2[order[1:]])
        yy2=np.minimum(y2[i],y2[order[1:]])
        
        w=np.maximum(0.,xx2-xx1+1)
        h=np.maximum(0.,yy2-yy1+1)
        inter=w*h
        iou=inter/(areas[i]+areas[order[1:]]-inter)
        
        inds=np.where(iou<=thresh)[0]
        order=order[inds+1]

    return keep

2、在MaskRCNN中的python实现:

def non_max_suppression(boxes,scores,threshold):
    '''
    保留boxes的索引
    boxes:[N,(y1,x1,y2,x2)],(y2,x2)可能会超过box的边界
    scores:box分数的一数组
    threshold:Float型,用于过滤IoU的阈值
    '''
    assert boxes.shape[0]>0
    if boxes.dtpye.kind!='f':
        boxes=boxes.astype(np.float32)
    
    #计算box面积
    y1=boxes[:,0]
    x1=boxes[:,1]
    y2=boxes[:,2]
    y3=boxes[:,3]
    area=(y2-y1)*(x2-x1)
    
    #获取根据分数排序的boxes的索引(最高的排在对前面)
    ixs=scores.argsort()[::-]
   
    pick=[]
    while len(ixs)>0:
        i=ixs[0]
        pick.append(i)    
        iou=compute_iou(boxes[i],boxes[ixs[1:]],area[i],area[ixs[1:]])
        remove_ixs=np.where(iou>threshold)[0]+1
        ixs=np.delete(ixs,remove_ixs)
        ixs=np.delete(ixs,0)

    return np.array(pick,dtype=np.int32)

3、C++实现

  

static void sort(int n, const float* x, int* indices)  
{  
// 排序函数(降序排序),排序后进行交换的是indices中的数据  
// n:排序总数// x:带排序数// indices:初始为0~n-1数目   
  
    int i, j;  
    for (i = 0; i < n; i++)  
        for (j = i + 1; j < n; j++)  
        {  
            if (x[indices[j]] > x[indices[i]])  
            {  
                //float x_tmp = x[i];  
                int index_tmp = indices[i];  
                //x[i] = x[j];  
                indices[i] = indices[j];  
                //x[j] = x_tmp;  
                indices[j] = index_tmp;  
            }  
        }  
}

int nonMaximumSuppression(int numBoxes, const CvPoint *points,  
                          const CvPoint *oppositePoints, const float *score,  
                          float overlapThreshold,  
                          int *numBoxesOut, CvPoint **pointsOut,  
                          CvPoint **oppositePointsOut, float **scoreOut)  
{  
  
// numBoxes:窗口数目// points:窗口左上角坐标点// oppositePoints:窗口右下角坐标点  
// score:窗口得分// overlapThreshold:重叠阈值控制// numBoxesOut:输出窗口数目  
// pointsOut:输出窗口左上角坐标点// oppositePoints:输出窗口右下角坐标点  
// scoreOut:输出窗口得分  
    int i, j, index;  
    float* box_area = (float*)malloc(numBoxes * sizeof(float));    // 定义窗口面积变量并分配空间   
    int* indices = (int*)malloc(numBoxes * sizeof(int));          // 定义窗口索引并分配空间   
    int* is_suppressed = (int*)malloc(numBoxes * sizeof(int));    // 定义是否抑制表标志并分配空间   
    // 初始化indices、is_supperssed、box_area信息   
    for (i = 0; i < numBoxes; i++)  
    {  
        indices[i] = i;  
        is_suppressed[i] = 0;  
        box_area[i] = (float)( (oppositePoints[i].x - points[i].x + 1) *  
                                (oppositePoints[i].y - points[i].y + 1));  
    }  
    // 对输入窗口按照分数比值进行排序,排序后的编号放在indices中   
    sort(numBoxes, score, indices);  
    for (i = 0; i < numBoxes; i++)                // 循环所有窗口   
    {  
        if (!is_suppressed[indices[i]])           // 判断窗口是否被抑制   
        {  
            for (j = i + 1; j < numBoxes; j++)    // 循环当前窗口之后的窗口   
            {  
                if (!is_suppressed[indices[j]])   // 判断窗口是否被抑制   
                {  
                    int x1max = max(points[indices[i]].x, points[indices[j]].x);                     // 求两个窗口左上角x坐标最大值   
                    int x2min = min(oppositePoints[indices[i]].x, oppositePoints[indices[j]].x);     // 求两个窗口右下角x坐标最小值   
                    int y1max = max(points[indices[i]].y, points[indices[j]].y);                     // 求两个窗口左上角y坐标最大值   
                    int y2min = min(oppositePoints[indices[i]].y, oppositePoints[indices[j]].y);     // 求两个窗口右下角y坐标最小值   
                    int overlapWidth = x2min - x1max + 1;            // 计算两矩形重叠的宽度   
                    int overlapHeight = y2min - y1max + 1;           // 计算两矩形重叠的高度   
                    if (overlapWidth > 0 && overlapHeight > 0)  
                    {  
                        float overlapPart = (overlapWidth * overlapHeight) / box_area[indices[j]];    // 计算重叠的比率   
                        if (overlapPart > overlapThreshold)          // 判断重叠比率是否超过重叠阈值   
                        {  
                            is_suppressed[indices[j]] = 1;           // 将窗口j标记为抑制   
                        }  
                    }  
                }  
            }  
        }  
    }  
  
    *numBoxesOut = 0;    // 初始化输出窗口数目0   
    for (i = 0; i < numBoxes; i++)  
    {  
        if (!is_suppressed[i]) (*numBoxesOut)++;    // 统计输出窗口数目   
    }  
  
    *pointsOut = (CvPoint *)malloc((*numBoxesOut) * sizeof(CvPoint));           // 分配输出窗口左上角坐标空间   
    *oppositePointsOut = (CvPoint *)malloc((*numBoxesOut) * sizeof(CvPoint));   // 分配输出窗口右下角坐标空间   
    *scoreOut = (float *)malloc((*numBoxesOut) * sizeof(float));                // 分配输出窗口得分空间   
    index = 0;  
    for (i = 0; i < numBoxes; i++)                  // 遍历所有输入窗口   
    {  
        if (!is_suppressed[indices[i]])             // 将未发生抑制的窗口信息保存到输出信息中   
        {  
            (*pointsOut)[index].x = points[indices[i]].x;  
            (*pointsOut)[index].y = points[indices[i]].y;  
            (*oppositePointsOut)[index].x = oppositePoints[indices[i]].x;  
            (*oppositePointsOut)[index].y = oppositePoints[indices[i]].y;  
            (*scoreOut)[index] = score[indices[i]];  
            index++;  
        }  
  
    }  
  
    free(indices);          // 释放indices空间   
    free(box_area);         // 释放box_area空间   
    free(is_suppressed);    // 释放is_suppressed空间   
  
    return LATENT_SVM_OK;  
}  

优化版:SoftNMS

 NMS能解决大部分的重叠问题,但如下图的情况就无法解决,红色框和绿色框是当前的检测结果,二者的得分分别是0.95和0.80。如果按照传统的NMS进行处理,首先选中得分最高的红色框,然后绿色框就会因为与之重叠面积过大而被删掉。另一方面,NMS的阈值也不太容易确定,设小了会出现下图的情况(绿色框因为和红色框重叠面积较大而被删掉),设置过高又容易增大误检。

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

 思路:不要简单粗暴地删除所有IOU大于阈值的框,而是降低其置信度。

伪代码如下:

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

 NMS可以描述如下:将IOU大于阈值的窗口的得分全部置为0。

SoftNMS改进有两种形式

一种是线性加权的:

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

一种是高斯加权的:

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

 两种方法的思路都是:M为当前得分最高框,Bi是待处理框,和M的IOU越大,Bi的得分就下降的越厉害。

def cpu_soft_nms(np.ndarray[float, ndim=2] boxes, float sigma=0.5, float Nt=0.3, float threshold=0.001, unsigned int method=0):
    cdef unsigned int N = boxes.shape[0]
    cdef float iw, ih, box_area
    cdef float ua
    cdef int pos = 0
    cdef float maxscore = 0
    cdef int maxpos = 0
    cdef float x1,x2,y1,y2,tx1,tx2,ty1,ty2,ts,area,weight,ov

    for i in range(N):
        maxscore = boxes[i, 4]
        maxpos = i

        tx1 = boxes[i,0]
        ty1 = boxes[i,1]
        tx2 = boxes[i,2]
        ty2 = boxes[i,3]
        ts = boxes[i,4]

        pos = i + 1
    # get max box
        while pos < N:
            if maxscore < boxes[pos, 4]:
                maxscore = boxes[pos, 4]
                maxpos = pos
            pos = pos + 1

    # add max box as a detection 
        boxes[i,0] = boxes[maxpos,0]
        boxes[i,1] = boxes[maxpos,1]
        boxes[i,2] = boxes[maxpos,2]
        boxes[i,3] = boxes[maxpos,3]
        boxes[i,4] = boxes[maxpos,4]

    # swap ith box with position of max box
        boxes[maxpos,0] = tx1
        boxes[maxpos,1] = ty1
        boxes[maxpos,2] = tx2
        boxes[maxpos,3] = ty2
        boxes[maxpos,4] = ts

        tx1 = boxes[i,0]
        ty1 = boxes[i,1]
        tx2 = boxes[i,2]
        ty2 = boxes[i,3]
        ts = boxes[i,4]

        pos = i + 1
    # NMS iterations, note that N changes if detection boxes fall below threshold
        while pos < N:
            x1 = boxes[pos, 0]
            y1 = boxes[pos, 1]
            x2 = boxes[pos, 2]
            y2 = boxes[pos, 3]
            s = boxes[pos, 4]

            area = (x2 - x1 + 1) * (y2 - y1 + 1)
            iw = (min(tx2, x2) - max(tx1, x1) + 1)
            if iw > 0:
                ih = (min(ty2, y2) - max(ty1, y1) + 1)
                if ih > 0:
                    ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih)
                    ov = iw * ih / ua #iou between max box and detection box

                    if method == 1: # linear
                        if ov > Nt: 
                            weight = 1 - ov
                        else:
                            weight = 1
                    elif method == 2: # gaussian
                        weight = np.exp(-(ov * ov)/sigma)
                    else: # original NMS
                        if ov > Nt: 
                            weight = 0
                        else:
                            weight = 1

                    boxes[pos, 4] = weight*boxes[pos, 4]

            # if box score falls below threshold, discard the box by swapping with last box
            # update N
                    if boxes[pos, 4] < threshold:
                        boxes[pos,0] = boxes[N-1, 0]
                        boxes[pos,1] = boxes[N-1, 1]
                        boxes[pos,2] = boxes[N-1, 2]
                        boxes[pos,3] = boxes[N-1, 3]
                        boxes[pos,4] = boxes[N-1, 4]
                        N = N - 1
                        pos = pos - 1

            pos = pos + 1

    keep = [i for i in range(N)]
    return keep

解释如下:

目标检测后处理之NMS(非极大值抑制算法)-风君雪科技博客

如上图,假如还检测出了3号框,而我们的最终目标是检测出1号和2号框,并且剔除3号框,原始的nms只会检测出一个1号框并剔除2号框和3号框,而softnms算法可以对1、2、3号检测狂进行置信度排序,可以知道这三个框的置信度从大到小的顺序依次为:1-》2-》3(由于是使用了惩罚,所有可以获得这种大小关系),如果我们再选择了合适的置信度阈值,就可以保留1号和2号,同时剔除3号,实现我们的功能。

遗留问题:

       置信度的阈值设置目前还是手工设置,这依然存在很大局限性,所以还有改进的空间。

参考链接:

1、https://www.cnblogs.com/zf-blog/p/8532228.html

2、https://blog.csdn.net/heiheiya/article/details/81169758