近期,布里斯托大学数学教授安德鲁·布克(Andrew Booker)将其中一个数字从谜团名单中删除,他创建了一个计算机算法,来寻找 x^3 + y^3 + z^3 = k 的解,该算法运行时涉及到 10^16 次数值
英国一位数学家最新破解了困扰人们 64 年的一道数学难题:33 如何用 3 个立方数字之和表达
新浪科技讯,北京时间 4 月 9 日消息,据国外媒体报道,英国一位数学家最新破解了困扰人们 64 年的一道数学难题:33 如何用 3 个立方数字之和表达。
虽然这个问题看似简单,但它是一个长期存在的数字理论难题,它至少可追溯至 1955 年,早在 3 世纪,希腊思想家就可能认真思考过这个问题,这是要解的方程:x^3 + y^3 + z^3 = k。
这是丢番图方程的一个例子,丢番图方程是以埃及古代数学家丢番图(生卒时间约 246-330 年),大约 1800 年前丢番图提出一串含有多个未知变量的类似方程。如果你想试选一些数字,从 1 至无限大的整数,作为k数值。现在的挑战是找到x、y、z的数值,当它们的立方和等于k,x、y、z的数值可以是负数,也可以是正数,它们可以是一个长串数字,也可以是一个小数字。
例如:如果你选择k数值为8,该方程的一个解是:2^3 + 1^3 + (-1)^3 = 8。自上世纪 80 年代以来,数学家们一直在努力尝试k数值,并寻找适合的x、y、z数值,解开这个方程式。但是他们发现一些数字永远不会奏效,例如:k数值除以 9 余数为 4 或者 5 的数都不会有丢番图方程解,这排除了 100 之内的 22 个数,但其它 78 个数应当有相应的方程解,却有两个数一直困扰着科学家:33 和 42。
近期,布里斯托大学数学教授安德鲁·布克(Andrew Booker)将其中一个数字从谜团名单中删除,他创建了一个计算机算法,来寻找x^3 + y^3 + z^3 = k 的解,该算法运行时涉及到 10^16 次数值。目前,布克打算揭晓k值在 100 之内的所有丢番图方程解,他并未期望能解开k值为 33 的方程,但在计算机算法运行几周,一个答案出现了:(8,866,128,975,287,528)^3 + (–8,778,405,442,862,239)^3 + (–2,736,111,468,807,040)^3 = 33。
布克在 YouTube 视频网站上称,当我发现这个方程解时,高兴得跳了起来!而我的妻子却对我的表现感到莫名其妙。这样困扰科学家几十年的数学难题就剩下 42,基于当前布克的方程解,数学家们知道方程中的数值大于 99 千万亿。
基于现代计算能力,加快计算速度可能需要一段时间,不过对于道格拉斯·亚当斯(Douglas Adams)撰写的《银河系漫游指南》系列丛书的粉丝而言,该情况并不令人意外。该书中虚构了一个生命、宇宙和一切终极问题的答案——42。《银河系漫游指南》中指出,一台超级计算机用了 750 万年的时间来处理这个问题,结果发现 42 是一个神秘的无解数值。(叶倾城)
最新评论